Non-Gaussianity in CMB Polarization by extending the Minkowski Functionals framework

Javier Carrón Duque

javier.carron@roma2.infn.it

A Cosmic Window to Fundamental Physics: Primordial Non-Gaussianity and Beyond September 2022 – IFT, Madrid, Spain

In collaboration with:

- Alessandro Carones
- Domenico Marinucci
- Marina Migliaccio
- Nicola Vittorio

We produced a Cosmic Filaments catalogue

- Publicly available: www.javiercarron.com/catalogue
- 0.05 < z < 2.2
- Promising results in different topics

A novel cosmic filament catalogue from SDSS data*

Javier Carrón Duque^{1,2}, Marina Migliaccio^{1,2}, Domenico Marinucci³, and Nicola Vittorio^{1,2}

•0000000000 MFs in CMB polarization

Javier Carrón Duque javier.carron@roma2.infn.it

Outline

- Introduction
- Minkowski Functionals on CMB polarization
- Other applications of Minkowski Functionals
- Conclusions

MFs in CMB polarization

Javier Carrón Duque javier.carror

8 polarization ki Functionals

javier.carron@roma2.infn.it

Gaussian fields are easy to describe

• Gaussian \rightarrow Physical process fully described by 2pt correlation function

- Blind to non—Gaussianity
- Other tools: 3/4 pt correlation function (bi/tri-spectrum), extrema statistics, Minkowski Functionals

0000000 MFs in CMB polarization

Javier Carrón Duque javier.carron@roma2.infn.it

Minkowski Functionals are higher order statistics

- We consider a field (*e.g.*, *T*)
- Let u be a threshold (e.g., 2σ)
- We define the **excursion set** A(u) as the regions of the field above u
- Minkowski Functionals are:
 - \circ V₀ : area of A(u)
 - \circ V₁ : boundary length of A(u)
 - \circ V₂ : Euler–Poincaré characteristic of A(u) (#regions – #holes)

0000 MFs in CMB polarization

Javier Carrón Duque javier.carron@roma2.infn.it

Minkowski Functionals are sensitive to non–Gaussianity

• For isotropic Gaussian fields, the expectation is known:

$$\mathbb{E}\left[V_i(u)\right] \sim f_1(u) \cdot f_2(\mathbb{S}^2)$$
Threshold Ambient
manifold

• Any deviation is due to non—Gaussianity and/or anisotropy

000000 MFs in CMB polarization

Javier Carrón Duque javier.carron@roma2.infn.it

 $\cdot f_3(\mu)$

Characteristics of the map (angular power spectrum)

Minkowski Functionals are sensitive to non–Gaussianity

• For isotropic Gaussian fields, the expectation is known:

$$\mathbb{E}\left[V_i(u)\right] \sim f_1(u) \cdot f_2(\mathbb{S}^2)$$
Threshold Ambient
manifold

- Any deviation is due to non—Gaussianity and/or anisotropy
- Early Universe (e.g., T): test for primordial non–Gaussianity
- Late Universe (e.g., κ): extract more cosmological information

0000 MFs in CMB polarization

Javier Carrón Duque javier.carron@roma2.infn.it

 $\cdot f_3(\mu)$ Characteristics of the map

(angular power spectrum)

We extend MFs to modulus of polarization P²

- Paper coming soon! • We generalize the theoretical formula for $P^2 = Q^2 + U^2$
 - Excellent compatibility between theory and Gaussian simulations
 - Planck data in agreement with realistic simulations (with anisotropic noise)

Javier Carrón Duque

javier.carron@roma2.infn.it

We extend MFs to modulus of polarization P²

- Paper coming soon! • We generalize the theoretical formula for $P^2 = Q^2 + U^2$
 - Excellent compatibility between theory and Gaussian simulations
 - Planck data in agreement with realistic simulations (with anisotropic noise)

MFs in CMB polarization

Javier Carrón Duque

javier.carron@roma2.infn.it

And we extend MFs to full polarization $P(\varphi, \theta, \psi)$

- Full polarization information in $f(\phi,\theta,\psi) = Q(\phi,\theta)\cos(2\psi) U(\phi,\theta)\sin(2\psi)$
- We obtain the theoretical prediction for the MFs
- Simulations fully compatible with theory

Javier Carrón Duque

javier.carron@roma2.infn.it

Š

۵V٥

 \sim^{2}

 ΔV_2

We explore the non—Gaussianity of Galactic dust

- Galactic dust is intrinsically non—Gaussian and anisotropic
- Good realistic simulations should include non—Gaussianities from realistic foreground \bullet
- We use MFs to compare several methods used to simulate polarized dust emission

Javier Carrón Duque javier.carron@roma2.infn.it

w/ Giuseppe **Puglisi**

MFs can be applied to the CMB power asymmetry

- Typically: variance + Gaussianity \Rightarrow theoretical MFs
- But also: measured MFs + Gaussianity \Rightarrow variance
- Stay tuned for results

Javier Carrón Duque javier.carron@roma2.infn.it

w/ Giacomo Galloni

We develop Pynkowski as a Python package

- Pynkowski is fully documented and modular
- Theory module: computes the theoretical prediction of different kinds of fields
- Data module: computes the MFs on different kinds of data structures
- Both modules are easy to expand

https://github.com/javicarron/pynkowski

Now available!

MFs in CMB polarization

Javier Carrón Duque javier.carron@roma2.infn.it

Takeaway points

- Minkowski Functionals are useful tools to study non—Gaussianity
- It has many applications in both Early and Late Universe
- We created Pynkowski to ease the application of MFs to the community

Javier Carrón Duque

javier.carron@roma2.infn.it

Takeaway points

- Minkowski Functionals are useful tools to study non—Gaussianity
- It has many applications in both Early and Late Universe
- We created Pynkowski to ease the application of MFs to the community

Javier Carrón Duque javier.carron@roma2.infn.it

Backup images

		χ^2	p_{exc} (%)	σ
V_0	SMICA	1.074	30.7	0.37
	SEVEM	0.885	74.0	-0.70
V_1	SMICA	1.135	19.7	0.72
	SEVEM	1.022	43.7	0.09
V_2	SMICA	1.051	39.3	0.27
	SEVEM	1.263	0.09	1.55

j $\mathbb{E}\left[V_j(A(u))\right] \propto \sum \rho_k(u) V_{j-k}(\mathbb{S}^2) \mu^{k/2}$ k=0Ambient Threshold manifold

Characteristics of the map (angular power spectrum)

 $\frac{\mathbb{E}\left[V_0(A_u)\right]}{4\pi} = 1 - \Phi(u)$ $\frac{\mathbb{E}\left[V_1(A_u)\right]}{4\pi} = \frac{1}{8} \exp\left(-\frac{u^2}{2}\right) \mu^{1/2}$ $\frac{\mathbb{E}\left[V_2(A_u)\right]}{4\pi} = \frac{2\mu}{\sqrt{(2\pi)^3}} \exp(-\frac{u^2}{2})$

 $\frac{\mathbb{E}\left[V_0(A_u)\right]}{4\pi} = \exp(-u/2)$ $\frac{\mathbb{E}\left[V_1(A_u)\right]}{4\pi} = \frac{\sqrt{2\pi}}{8}\sqrt{\mu u}\exp\left(-\frac{u}{2}\right)$ $\frac{\mathbb{E}\left[V_2(A_u)\right]}{4\pi} = \mu \frac{(u-1)\exp(-u/2)}{2\pi}$